图书介绍
机器学习导论 2版【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- 阿培丁著 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111453772
- 出版时间:2014
- 标注页数:338页
- 文件大小:34MB
- 文件页数:183页
- 主题词:机器学习-研究
PDF下载
下载说明
机器学习导论 2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 绪论1
1.1什么是机器学习1
1.2机器学习的应用实例3
1.2.1学习关联性3
1.2.2分类3
1.2.3回归6
1.2.4非监督学习7
1.2.5增强学习8
1.3注释8
1.4相关资源10
1.5习题11
1.6参考文献12
第2章 监督学习13
2.1由实例学习类13
2.2 VC维15
2.3概率逼近正确学习16
2.4噪声17
2.5学习多类18
2.6回归19
2.7模型选择与泛化21
2.8监督机器学习算法的维23
2.9注释24
2.10习题25
2.11参考文献25
第3章 贝叶斯决策定理27
3.1引言27
3.2分类28
3.3损失与风险29
3.4判别式函数31
3.5效用理论31
3.6关联规则32
3.7注释33
3.8习题33
3.9参考文献34
第4章 参数方法35
4.1引言35
4.2最大似然估计35
4.2.1伯努利密度36
4.2.2多项密度36
4.2.3高斯(正态)密度37
4.3评价估计:偏倚和方差37
4.4贝叶斯估计38
4.5参数分类40
4.6回归43
4.7调整模型的复杂度:偏倚/方差两难选择45
4.8模型选择过程47
4.9注释50
4.10习题50
4.11参考文献51
第5章 多元方法52
5.1多元数据52
5.2参数估计52
5.3缺失值估计53
5.4多元正态分布54
5.5多元分类56
5.6调整复杂度59
5.7离散特征61
5.8多元回归62
5.9注释63
5.10习题63
5.11参考文献64
第6章 维度归约65
6.1引言65
6.2子集选择65
6.3主成分分析67
6.4因子分析71
6.5多维定标77
6.6线性判别分析77
6.7等距特征映射80
6.8局部线性嵌入81
6.9注释83
6.10习题84
6.11参考文献85
第7章 聚类86
7.1引言86
7.2混合密度86
7.3 k-均值聚类87
7.4期望最大化算法90
7.5潜在变量混合模型93
7.6聚类后的监督学习94
7.7层次聚类95
7.8选择簇个数96
7.9注释96
7.10习题97
7.11参考文献97
第8章 非参数方法99
8.1引言99
8.2非参数密度估计99
8.2.1直方图估计100
8.2.2核估计101
8.2.3 k-最近邻估计102
8.3到多元数据的推广103
8.4非参数分类104
8.5精简的最近邻105
8.6非参数回归:光滑模型106
8.6.1移动均值光滑106
8.6.2核光滑108
8.6.3移动线光滑108
8.7如何选择光滑参数109
8.8注释110
8.9习题111
8.10参考文献112
第9章 决策树113
9.1引言113
9.2单变量树114
9.2.1分类树114
9.2.2回归树118
9.3剪枝119
9.4由决策树提取规则120
9.5由数据学习规则121
9.6多变量树124
9.7注释125
9.8习题126
9.9参考文献127
第10章 线性判别式129
10.1引言129
10.2推广线性模型130
10.3线性判别式的几何意义131
10.3.1两类问题131
10.3.2多类问题132
10.4逐对分离132
10.5参数判别式的进一步讨论133
10.6梯度下降135
10.7逻辑斯谛判别式135
10.7.1两类问题135
10.7.2多类问题138
10.8回归判别式141
10.9注释142
10 10习题143
10.11参考文献143
第11章 多层感知器144
11.1引言144
11.1.1理解人脑144
11.1.2神经网络作为并行处理的典范145
11.2感知器146
11.3训练感知器148
11.4学习布尔函数150
11.5多层感知器151
11.6作为普适近似的MLP153
11.7后向传播算法154
11.7.1非线性回归154
11.7.2两类判别式157
11.7.3多类判别式158
11.7.4多个隐藏层158
11.8训练过程158
11.8.1改善收敛性158
11.8.2过分训练159
11.8.3构造网络161
11.8.4线索162
11.9调整网络规模163
11.10学习的贝叶斯观点164
11.11维度归约165
11.12学习时间167
11.12.1时间延迟神经网络167
11.12.2递归网络168
11.13注释169
11.14习题170
11.15 参考文献170
第12章 局部模型173
12.1引言173
12.2竞争学习173
12.2.1在线k-均值173
12.2.2自适应共鸣理论176
12.2.3自组织映射177
12.3径向基函数178
12.4结合基于规则的知识182
12.5规范化基函数182
12.6竞争的基函数184
12.7学习向量量化186
12.8混合专家模型186
12.8.1协同专家模型188
12.8.2竞争专家模型188
12.9层次混合专家模型189
12.10注释189
12.11习题190
12.12参考文献190
第13章 核机器192
13.1引言192
13.2最佳分离超平面193
13.3不可分情况:软边缘超平面195
13.4v-SVM197
13.5核技巧198
13.6向量核199
13.7定义核200
13.8多核学习201
13.9多类核机器202
13.10用于回归的核机器203
13.11一类核机器206
13.12核维度归约208
13.13注释209
13.14习题209
13.15 参考文献210
第14章 贝叶斯估计212
14.1引言212
14.2分布参数的估计213
14.2.1离散变量213
14.2.2连续变量215
14.3函数参数的贝叶斯估计216
14.3.1回归216
14.3.2基函数或核函数的使用218
14.3.3贝叶斯分类219
14.4高斯过程221
14.5注释223
14.6习题224
14.7参考文献224
第15章 隐马尔可夫模型225
15.1引言225
15.2离散马尔可夫过程225
15.3隐马尔可夫模型227
15.4 HMM的三个基本问题229
15.5估值问题229
15.6寻找状态序列231
15.7学习模型参数233
15.8连续观测235
15.9带输入的HMM236
15.10 HMM中的模型选择236
15.11注释237
15.12习题238
15.13参考文献239
第16章 图方法240
16.1引言240
16.2条件独立的典型情况241
16.3图模型实例245
16.3.1朴素贝叶斯分类245
16.3.2隐马尔可夫模型246
16.3.3线性回归248
16.4 d-分离248
16.5信念传播249
16.5.1链249
16.5.2树250
16.5.3多树251
16.5.4结树252
16.6无向图:马尔可夫随机场253
16.7学习图模型的结构254
16.8影响图255
16.9注释255
16.10习题256
16.11参考文献256
第17章 组合多学习器258
17.1基本原理258
17.2产生有差异的学习器258
17.3模型组合方案260
17.4投票法261
17.5纠错输出码263
17.6装袋265
17.7提升265
17.8重温混合专家模型267
17.9层叠泛化268
17.10调整系综268
17.11级联269
17.12注释270
17.13习题271
17.14参考文献272
第18章 增强学习275
18.1引言275
18.2单状态情况:K臂赌博机问题276
18.3增强学习基础277
18.4基于模型的学习278
18.4.1价值迭代279
18.4.2策略迭代279
18.5时间差分学习280
18.5.1探索策略280
18.5.2确定性奖励和动作280
18.5.3非确定性奖励和动作282
18.5.4资格迹283
18.6推广285
18.7部分可观测状态286
18.7.1场景286
18.7.2例子:老虎问题287
18.8注释290
18.9习题291
18.10参考文献292
第19章 机器学习实验的设计与分析294
19.1引言294
19.2因素、响应和实验策略296
19.3响应面设计297
19.4随机化、重复和阻止298
19.5机器学习实验指南298
19.6交叉验证和再抽样方法300
19.6.1 K-折交叉验证300
19.6.2 5 x2交叉验证301
19.6.3自助法302
19.7度量分类器的性能302
19.8区间估计304
19.9假设检验307
19.10评估分类算法的性能308
19.10.1二项检验308
热门推荐
- 1921062.html
- 3344340.html
- 837673.html
- 3264458.html
- 2399650.html
- 2441459.html
- 265501.html
- 1331214.html
- 3277670.html
- 304169.html
- http://www.ickdjs.cc/book_3768394.html
- http://www.ickdjs.cc/book_3526763.html
- http://www.ickdjs.cc/book_1017381.html
- http://www.ickdjs.cc/book_3012942.html
- http://www.ickdjs.cc/book_1994251.html
- http://www.ickdjs.cc/book_1215173.html
- http://www.ickdjs.cc/book_2568709.html
- http://www.ickdjs.cc/book_540836.html
- http://www.ickdjs.cc/book_1561192.html
- http://www.ickdjs.cc/book_831373.html