图书介绍

Probability Concepts in Engineering* Emphasis on Applications in Civil & Environmental Engineering【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

Probability Concepts in Engineering* Emphasis on Applications in Civil & Environmental Engineering
  • ALFREDO H-S.ANG 著
  • 出版社: Inc
  • ISBN:
  • 出版时间:2007
  • 标注页数:406页
  • 文件大小:321MB
  • 文件页数:420页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Probability Concepts in Engineering* Emphasis on Applications in Civil & Environmental EngineeringPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Roles of Probability and Statistics in Engineering1

1.1 Introduction1

1.2 Uncertainty in Engineering2

1.2.1 Uncertainty Associated with Randomness-The Aleatory Uncertainty2

1.2.2 Uncertainty Associated with Imperfect Knowledge--The Epistemic Uncertainty17

1.3 Design and Decision Making under Uncertainty19

1.3.1 Planning and Design of Transportation Infrastructures20

1.3.2 Design of Structures and Machines20

1.3.3 Planning and Design of Hydrosystems22

1.3.4 Design of Geotechnical Systems23

1.3.5 Construction Planning and Management23

1.3.6 Photogrammetric, Geodetic, and Surveying Measurements24

1.3.7 Applications in Quality Control and Assurance24

1.4 Concluding Summary25

References25

CHAPTER 2 Fundamentals of Probability Models27

2.1 Events and Probability27

2.1.1 Characteristics of Problems Involving Probabilities27

2.1.2 Estimating Probabilities30

2.2 Elements of Set Theory-Tools for Defining Events31

2.2.1 Important Definitions31

2.2.2 Mathematical Operations of Sets39

2.3 Mathematics of Probability44

2.3.1 The Addition Rule45

2.3.2 Conditional Probability49

2.3.3 The Multiplication Rule52

2.3.4 The Theorem of Total Probability57

2.3.5 The Bayes' Theorem63

2.4 Concluding Summary65

Problems66

References80

CHAPTER 3 Analytical Models of Random Phenomena81

3.1 Random Variables and Probability Distribution81

3.1.1 Random Events and Random Variables81

3.1.2 Probability Distribution of a Random Variable82

3.1.3 Main Descriptors of a Random Variable88

3.2 Useful Probability Distributions96

3.2.1 The Gaussian (or Normal) Distribution96

3.2.2 The Lognormal Distribution100

3.2.3 The Bernoulli Sequence and the Binomial Distribution105

3.2.4 The Geometric Distribution108

3.2.5 The Negative Binomial Distribution111

3.2.6 The Poisson Process and the Poisson Distribution112

3.2.7 The Exponential Distribution118

3.2.8 The Gamma Distribution122

3.2.9 The Hypergeometric Distribution126

3.2.10 The Beta Distribution127

3.2.11 Other Useful Distributions131

3.3 Multiple Random Variables132

3.3.1 Joint and Conditional Probability Distributions132

3.3.2 Covariance and Correlation138

3.4 Concluding Summary141

Problems141

References150

CHAPTER 4 Functions of Random Variables151

4.1 Introduction151

4.2 Derived Probability Distributions151

4.2.1 Function of a Single Random Variable151

4.2.2 Function of Multiple Random Variables157

4.2.3 Extreme Value Distributions172

4.3 Moments of Functions of Random Variables180

4.3.1 Mathematical Expectations of a Function180

4.3.2 Mean and Variance of a General Function183

4.4 Concluding Summary190

Problems190

References198

CHAPTER 5 Computer-Based Numerical and Simulation Methods in Probability199

5.1 Introduction199

5.2 Numerical and Simulations Methods200

5.2.1 Essentials of Monte Carlo Simulation200

5.2.2 Numerical Examples201

5.2.3 Problems Involving Aleatory and Epistemic Uncertainties223

5.2.4 MCS Involving Correlated Random Variables231

5.3 Concluding Summary242

Problems242

References and Softwares244

CHAPTER 6 Statistical Inferences from Observational Data245

6.1 Role of Statistical Inference in Engineering245

6.2 Statistical Estimation of Parameters246

6.2.1 Random Sampling and Point Estimation246

6.2.2 Sampling Distributions255

6.3 Testing of Hypotheses258

6.3.1 Introduction258

6.3.2 Hypothesis Test Procedure259

6.4 Confidence Intervals262

6.4.1 Confidence Interval of the Mean262

6.4.2 Confidence Interval of the Proportion268

6.4.3 Confidence Interval of the Variance269

6.5 Measurement Theory270

6.6 Concluding Summary273

Problems274

References277

CHAPTER 7 Determination of Probability Distribution Models278

7.1 Introduction278

7.2 Probability Papers279

7.2.1 Utility and Plotting Position279

7.2.2 The Normal Probability Paper280

7.2.3 The Lognormal Probability Paper281

7.2.4 Construction of General Probability Papers284

7.3 Testing Goodness-of-Fit of Distribution Models289

7.3.1 The Chi-Square Test for Goodness-of-Fit289

7.3.2 The Kolmogorov-Smirnov (K-S) Test for Goodness-of-Fit293

7.3.3 The Anderson-Darling Test for Goodness-of-Fit296

7.4 Invariance in the Asymptotic Forms of Extremal Distributions300

7.5 Concluding Summary301

Problems302

References305

CHAPTER 8 Regression and Correlation Analyses306

8.1 Introduction306

8.2 Fundamentals of Linear Regression Analysis306

8.2.1 Regression with Constant Variance306

8.2.2 Variance in Regression Analysis308

8.2.3 Confidence Intervals in Regression309

8.3 Correlation Analysis311

8.3.1 Estimation of the Correlation Coefficient312

8.3.2 Regression of Normal Variates313

8.4 Linear Regression with Nonconstant Variance318

8.5 Multiple Linear Regression321

8.6 Nonlinear Regression325

8.7 Applications of Regression Analysis in Engineering333

8.8 Concluding Summary339

Problems339

References344

CHAPTER 9 The Bayesian Approach346

9.1 Introduction346

9.1.1 Estimation of Parameters346

9.2 Basic Concepts--The Discrete Case347

9.3 The Continuous Case352

9.3.1 General Formulation352

9.3.2 A Special Application of the Bayesian Updating Process357

9.4 Bayesian Concept in Sampling Theory360

9.4.1 General Formulation360

9.4.2 Sampling from Normal Populations360

9.4.3 Error in Estimation362

9.4.4 The Utility of Conjugate Distributions365

9.5 Estimation of Two Parameters368

9.6 Bayesian Regression and Correlation Analyses372

9.6.1 Linear Regression372

9.6.2 Updating the Regression Parameters374

9.6.3 Correlation Analysis375

9.7 Concluding Summary377

Problems377

References381

APPENDICES383

Appendix A: Probability Tables383

Table A.1 Standard Normal Probabilities383

Table A.2 CDF of the Binomial Distribution387

Table A.3 Critical Values of t-Distribution at Confidence Level (1 -α) = p392

Table A.4 Critical Values of the x2 Distribution at probability Level α393

Table A.5 Critical Values of Dan at Significance Level a in the K-S Test395

Table A.6 Critical Values of the Anderson-Darling Goodness-of-Fit Test395

Appendix B: Combinatorial Formulas397

B.1: The Basic Relation397

B.3: The Binomial Coefficient398

B.4: The Multinomial Coefficient399

B.5: Stirling's Formula399

Appendix C: Derivation of the Poisson Distribution400

Index403

热门推荐